

Customer: TosDis

Date: January 19th, 2021

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT systems and the
intellectual property of the Customer as well as information about potential
vulnerabilities and methods of their exploitation.

The report containing confidential information can be used internally by the
Customer, or it can be disclosed publicly after all vulnerabilities fixed - upon a
decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for TosDis Finance

Approved by Andrew Matiukhin | CTO Hacken OU

Type Token sale contract

Platform Ethereum / Solidity

Methods Architecture Review, Functional Testing, Computer-Aided Verification, Manual
Review

Repository https://github.com/tosdis/Contracts/blob/main/ITOPool.sol

Commit

Deployed
contract

Timeline 19 JAN 2021

Changelog 19 JAN 2021 – INITIAL AUDIT

https://github.com/tosdis/Contracts/blob/main/ITOPool.sol

Table of contents

Introduction ... 4

Scope .. 4

Executive Summary .. 5

Severity Definitions .. 7

AS-IS overview.. 8

Conclusion .. 14

Disclaimers ... 15

Introduction

Hacken OÜ (Consultant) was contracted by TosDis Finance (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This report
presents the findings of the security assessment of Customer's smart contract
and its code review conducted on January 19th, 2021.

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address:
Repository
Commit
Files:

ITOPool.sol
(b5d8da0cf1f4c310bcc3a3d0853fac0e7b125c52c6d8084df70c61b96ec3d5a6)

We have scanned this smart contract for commonly known and more specific
vulnerabilities. Here are some of the commonly known vulnerabilities that are
considered:

Category Check Item

Code review  Reentrancy

 Ownership Takeover

 Timestamp Dependence

 Gas Limit and Loops

 DoS with (Unexpected) Throw

 DoS with Block Gas Limit

 Transaction-Ordering Dependence

 Style guide violation

 Costly Loop

 ERC20 API violation

 Unchecked external call

 Unchecked math

 Unsafe type inference

 Implicit visibility level

 Deployment Consistency

 Repository Consistency

 Data Consistency

Functional review  Business Logics Review

 Functionality Checks

 Access Control & Authorization

 Escrow manipulation

 Token Supply manipulation

 Assets integrity

 User Balances manipulation

 Kill-Switch Mechanism

 Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart contracts are secure and can
be used in production.

Our team performed an analysis of code functionality, manual audit, and
automated checks with Mythril and Slither. All issues found during automated
analysis were manually reviewed, and important vulnerabilities are presented in
the Audit overview section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

After the first review, Customers` smart contracts contained 1 high and 1 low
severity issue.

Graph 1. Distribution of vulnerabilities after the first review.

High
50%

Low

50%

High Low

Insecure Poor secured Secured Well-secured

You are

here

After the second review, Customers` smart contracts contains 1 high and 1 low
severity issue.

Graph 2. Distribution of vulnerabilities after the second review.

After the third review, Customers` smart contracts do not contain
vulnerabilities.

Notice for the contract users: before using the contract ensure that all
parameters are set correctly, and the contract has at least
`maxDistributedTokenAmount / tokenPrice * 10^decimals` of tokens on its
balance.

High
50%

Low

50%

High Low

Severity Definitions

Risk Level Description

Critical
Critical vulnerabilities are usually straightforward to exploit and can
lead to assets loss or data manipulations.

High

High-level vulnerabilities are difficult to exploit; however, they also
have a significant impact on smart contract execution, e.g., public
access to crucial functions

Medium
Medium-level vulnerabilities are important to fix; however, they
can't lead to assets loss or data manipulations.

Low
Low-level vulnerabilities are mostly related to outdated, unused,
etc. code snippets that can't have a significant impact on
execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations, and info
statements can't affect smart contract execution and can be
ignored.

AS-IS overview

ITOPool.sol

Description

ITOPool is a token sale contract.

Imports

ITOPool contract has following imports:

 openzeppelin/contracts/access/Ownable.sol

 openzeppelin/contracts/utils/ReentrancyGuard.sol

 openzeppelin/contracts/math/SafeMath.sol

 openzeppelin/contracts/token/ERC20/SafeERC20.sol

 openzeppelin/contracts/token/ERC20/ERC20.sol

Inheritance

ITOPool contract is Ownable, ReentrancyGuard.

Usages

ITOPool contract has the following custom usages:

 SafeMath for uint256

 SafeERC20 for ERC20

Structs

ITOPool contract has following data structures:

 UserInfo

Enums

ITOPool contract has no custom enums.

Events

ITOPool contract has the following events:

 UpdatedSettings

 TokensDebt

 TokensWithdrawn

Modifiers

ITOPool has no custom modifiers.

Fields

ITOPool contract has following fields and constants:

 uint256 public tokenPrice

 ERC20 public rewardToken

 uint256 public decimals

 uint256 public startTimestamp

 uint256 public finishTimestamp

 uint256 public startClaimTimestamp

 uint256 public minEthPayment

 uint256 public maxEthPayment

 uint256 public maxDistributedTokenAmount

 uint256 public tokensForDistribution

 uint256 public distributedTokens

 mapping(address => UserInfo) public userInfo;

Functions

ITOPool has following public functions:

 constructor
Description
Sets default parameters of the contract.
Visibility
public
Input parameters

o uint256 _tokenPrice

o ERC20 _rewardToken

o uint256 _startTimestamp

o uint256 _finishTimestamp

o uint256 _startClaimTimestamp

o uint256 _minEthPayment

o uint256 _maxEthPayment

o uint256 _maxDistributedTokenAmount

Constraints
o Start timestamp must be less than finish timestamp.

o Finish timestamp must be more than current block.
Events emit
None
Output
None

 pay
Description
Pay ETH in exchange to tokens. Tokens withdrawal will be available after

`startClaimTimestamp` is reached.
Visibility
payable external
Input parameters
None
Constraints

o msg.value should be between `minEthPayment` and
`maxEthPayment`.

o Current timestamp should be between `startTimestamp` and
`finishTimestamp`

o Total purchase sum should not exceed the `maxEthPayment`.
Events emit
Emits the `TokensDebt` event.
Output
None

 claimFor
Description
Claims tokens on behalf of a `_user`.
Visibility
external
Input parameters

o address _user

Constraints
o Can only be called after the `startClaimTimestamp` is reached.

Events emit
Emits the `TokensWithdrawn` event.
Output
None

 claim
Description
Claims tokens on behalf of a message sender.
Visibility

external
Input parameters
None
Constraints

o Can only be called after the `startClaimTimestamp` is reached.
Events emit
Emits the `TokensWithdrawn` event.
Output
None

 withdrawETH
Description
Withdraw an `amount` of eth.
Visibility
external
Input parameters

o uint256 amount
Constraints

o Can only be called by the owner.
Events emit
None
Output
None

 withdrawNotSoldTokens
Description
Withdraw all unsold tokens.
Visibility
external
Input parameters

o uint256 amount
Constraints

o Can only be called by the owner.
o `finishTimestamp` should be reached.

Events emit
None
Output
None

 setFinishTimestamp, setStartClaimTimestamp,
setMaxDistributedTokenAmount
Description
Setter functions. Can only be used by the owner.

All functions were removed.

Audit overview

 Critical

No critical issues were found.

 High

1. setStartClaimTimestamp can be used by owners to change the
`startClaimTimestamp` value. As a result, customers who already
purchased tokens may not receive them when they expect to.

Fixed before the second review. The function was removed.

2. setFinishTimestamp can be used by owners to change the `
finishTimestamp ̀ value. This allows to transfer unsold tokens at any time.
As a result, customers who already purchased tokens may not receive
them when they expect to.

Fixed before the second review. The function was removed.

 Medium

No medium severity issues were found.

 Low

1. Usage of the `ReentrancyGuard` is redundant..

Fixed before the second review.

 Lowest / Code style / Best Practice

No informational issues were found.

Conclusion

Smart contracts within the scope were manually reviewed and analyzed with
static analysis tools. For the contract, high-level description of functionality was
presented in As-Is overview section of the report.

Audit report contains all found security vulnerabilities and other issues in the
reviewed code.

After the first review, Customers` smart contracts contained 1 high and 1 low
severity issue.

After the second review, Customers` smart contracts contains 1 low severity
issue.

After the third review, Customers` smart contracts contains 1 low severity issue.

Notice for the contract users: before using the contract ensure that all
parameters are set correctly, and the contract has at least
`maxDistributedTokenAmount / tokenPrice * 10^decimals` of tokens on its
balance.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in accordance with the
best industry practices at the date of this report, in relation to cybersecurity
vulnerabilities and issues in smart contract source code, the details of which are
disclosed in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended functions).

The audit makes no statements or warranties on security of the code. It also
cannot be considered as a sufficient assessment regarding the utility and safety
of the code, bugfree status or any other statements of the contract. While we
have done our best in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only - we recommend
proceeding with several independent audits and a public bug bounty program
to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform. The
platform, its programming language, and other software related to the smart
contract can have its vulnerabilities that can lead to hacks. Thus, the audit can't
guarantee the explicit security of the audited smart contracts.

