

Customer: Tosdis
Date: December 16th, 2020

SMART CONTRACT CODE
REVIEW AND SECURITY
ANALYSIS REPORT

This document may contain confidential information about IT
systems and the intellectual property of the Customer as well as
information about potential vulnerabilities and methods of their
exploitation.

The report containing confidential information can be used
internally by the Customer, or it can be disclosed publicly after
all vulnerabilities fixed - upon a decision of the Customer.

Document

Name Smart Contract Code Review and Security Analysis Report for Tosdis
Finance (22 pages).

Approved by Andrew Matiukhin | CTO Hacken OU
Type Staking protocol
Platform Ethereum / Solidity
Methods Architecture Review, Functional Testing, Computer-Aided

Verification, Manual Review.
Repository
Commit
Deployed
contract

Timeline Dec, 10th 2020 – Dec, 16th 2020
Changelog Dec, 10th 2020 – Dec, 12th 2020 Initial audit

Dec, 14th 2020 – Remediation check
Dec, 15th 2020 – Remediation check
Dec, 16th 2020 – Remediation check

Table of contents

Introduction.. 4

Scope... 4

Executive Summary... 5

Severity Definitions.. 6

AS-IS overview.. 7

Conclusion... 21

Disclaimers.. 22

Introduction

Hacken OÜ (Consultant) was contracted by Tosdis (Customer) to
conduct a Smart Contract Code Review and Security Analysis. This
report presents the findings of the security assessment of
Customer's smart contract and:

▪ Smart contract audit conducted between December 10th, 2020 –
December 16th, 2020.

▪ Remediation check was done December 14th, 2020;

▪ 2nd Remediation check was done December 15th, 2020;

▪ 3nd Remediation check was done December 16th, 2020.

Scope

The scope of the project is smart contracts in the repository:
Contract deployment address:
Repository
Commit
Files:

ERC20Basic.sol
Migrations.sol
Ownable.sol
StakingPool.sol
StakeMaster.sol

We have scanned this smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that are considered:

Category Check Item

Code review ▪ Reentrancy

▪ Ownership Takeover

▪ Timestamp Dependence

▪ Gas Limit and Loops

▪ DoS with (Unexpected) Throw

▪ DoS with Block Gas Limit

▪ Transaction-Ordering Dependence

▪ Style guide violation

▪ Costly Loop

▪ ERC20 API violation

▪ Unchecked external call

▪ Unchecked math

▪ Unsafe type inference

▪ Implicit visibility level

▪ Deployment Consistency

▪ Repository Consistency

▪ Data Consistency

Functional review ▪ Business Logics Review

▪ Functionality Checks

▪ Access Control & Authorization

▪ Escrow manipulation

▪ Token Supply manipulation

▪ Assets integrity

▪ User Balances manipulation

▪ Kill-Switch Mechanism

▪ Operation Trails & Event Generation

Executive Summary

According to the assessment, the Customer's smart has issues that
should be fixed. The code quality should be increased.

Our team performed an analysis of code functionality, manual
audit, and automated checks with Mythril and Slither. All issues
found during automated analysis were manually reviewed, and
important vulnerabilities are presented in the Audit overview
section. A general overview is presented in AS-IS section, and
all found issues can be found in the Audit overview section.

Security engineers found 1 critical 0 high, 0 medium, 0 low and 5
lowest issues during the first audit.

Update: Most contract’s vulnerabilities were fixed after the audit
was done. One low lowest severities left in contract and this risk
is acceptable. For details check “Audit overview” section.

Graph 1. The distribution of vulnerabilities after remediation check.

Critical, 0, 0%
High, 0, 0%Low, 0, 0%

Lowest, 1,
100%

Insecure Poor secured Secured Well-secured

You are here

Severity Definitions

Risk Level Description

Critical Critical vulnerabilities are usually straightforward to
exploit and can lead to assets loss or data
manipulations.

High High-level vulnerabilities are difficult to exploit;
however, they also have a significant impact on smart
contract execution, e.g., public access to crucial
functions

Medium Medium-level vulnerabilities are important to fix;
however, they can't lead to assets loss or data
manipulations.

Low Low-level vulnerabilities are mostly related to
outdated, unused, etc. code snippets that can't have
a significant impact on execution

Lowest / Code
Style / Best

Practice

Lowest-level vulnerabilities, code style violations,
and info statements can't affect smart contract
execution and can be ignored.

AS-IS overview

ERC20Basic.sol

Description

Basic contract ERC20. The basic functions are defined:
totalSupply, transfer, approve, allowance and transferFrom. Used
as an ERC20 token in StakingPool and StakeMaster contracts. Used
in scripts for deploying StakingPool and StakeMaster contracts.
Used in tests.

Imports

ERC20Basic contract hasn’t the imports.

Usages

ERC20Basic contract has the following custom usages:

• SafeMath for uint256

Variables:

• string public constant name = "ERC20Basic";

• string public constant symbol = "BSC";

• uint8 public constant decimals = 18;

• mapping(address => uint256) balances;

• mapping(address => mapping (address => uint256)) allowed;

• uint256 totalSupply_;

Structs

ERC20Basic contract has the following data structures:

• It is not possible to define name, symbol and decimals in
the constructor.

Enums

ERC20Basic contract has no custom enums.

Events

ERC20Basic contract has the following events:

• event Approval(address indexed tokenOwner, address indexed
spender, uint tokens);

• event Transfer(address indexed from, address indexed to, uint
tokens);

Modifiers

ERC20Basic has no custom modifiers.

Fields

ERC20Basic contract has following constants:

• string public constant name = "ERC20Basic";

• string public constant symbol = "BSC";

• uint8 public constant decimals = 18;

Functions

ERC20Basic has following public functions:

• constructor
Visibility
public
Input parameters

o uint256 total

Constraints
None
Events emit
None
Output
None

• totalSupply
Visibility
Public view
Input parameters

 None
Constraints
None.
Events emit
None
Output
Uint256

• transfer
Visibility

public
Input parameters

o address receiver,
o uint numTokens

Constraints
None
Events emit
None
Output
Bool

• approve
Visibility
public
Input parameters

o address delegate
o uint numTokens

Constraints
None
Events emit
None
Output
Bool

• allowance
Visibility
Public view
Input parameters

o address owner
o address delegate

Constraints
None
Events emit
None
Output
uint

• transferFrom
Visibility
public
Input parameters

o address owner,
o address buyer,
o uint numTokens

Constraints
None
Events emit
None

Output
Bool

Migrations.sol

Description

Used in deployment scripts.

Variables

o address public owner = msg.sender;

o uint public last_completed_migration;

Functions

Ownable has following public functions:

o setCompleted(uint completed) public restricted.

Ownable.sol

Description

Ownable the contract has an owner's address and provides basic
authorization control, making it easier to implement user
permissions.

Inheritance

Ownable contract is StakingPool, StakeMaster.

Variables

o address private _owner

Events

Ownable contract has the following custom events:

o event OwnershipTransferred(address indexed previousOwner,
address indexed newOwner)

Functions

Ownable has following public functions:

o constructor () internal;

o owner() public view returns (address);

o isOwner() public view returns (bool);

o renounceOwnership() public onlyOwner;

o transferOwnership(address newOwner) public onlyOwner;

o _transferOwnership(address newOwner) internal.

StakingPool.sol

Description

StakingPoo is contract for staking tokens stakingToken.

Imports

StakingPool contract hasn’t the imports.

Usages

StakingPool contract has the following custom usages:

• SafeMath for uint;

Variables

o IERC20 public stakingToken;

o IERC20 public rewardToken;

o uint256 public startBlock;

o uint256 public lastRewardBlock;

o uint256 public finishBlock;

o uint256 public totalShares;

o uint256 public rewardPerBlock;

o uint256 public accTokensPerShare; // Accumulated tokens
per share

o mapping (address => uint256) public stakes;

o mapping (address => uint256) public rewardDebts.

Structs

StakingPool contract has no custom data structures.

Enums

StakingPool contract has no custom enums.

Events

StakingPool contract has the following custom events:

• event FinishBlockUpdated(uint256 _newFinishBlock);

• event PoolReplenished(uint256 amount);

• event TokensStaked(address stakeholder, uint256 amount,
uint256 sharesAchived);

• event StakeWithdrawn(address stakeholder, uint256 amount,
uint256 reward);

• event EmergencyWithdraw(address indexed user, uint256
amount).

Modifiers

StakingPool has the no custom modifiers.

Fields

StakingPool contract hasn’t constants.

Functions

StakingPool has following public functions:

• constructor
Description
Defines stakingToken, rewardToken, startBlock, finishBlock,

poolTokenAmount, rewardPerBlock. stakingToken and poolToken -
IERC20 tokens.

Visibility
public
Input parameters

o address _stakingToken,
o address _poolToken,
o uint256 _startBlock,
o uint256 _finishBlock,
o uint256 _poolTokenAmount

Constraints
None
Events emit
None
Output

o uint256

• getMultiplier
Description
Getting the current multiplier for calculating the reward.
Visibility
public view
Input parameters

o uint256 _from,
o uint256 _to

Constraints
o depends on finishBlock number and from and to block

numbers.
Events emit
None
Output

o uint256
• pendingReward

Description
Calculates the current possible reward for the holder.
Visibility
external view
Input parameters

o address _user
Constraints
None
Events emit
None
Output

o uint256
• updatePool

Description
Updates accTokensPerShare and lastRewardBlock accumulating

rewards.
Visibility
public
Input parameters

 None
Constraints
None
Events emit
None
Output

o accTokensPerShare
o lastRewardBlock

• stakeTokens
Description

The user can stake a certain amount of coins, if he already
has staked coins, the reward is calculated and rewardTokens are
transferred to him.

Visibility
public
Input parameters

o uint256 _amountToStake
Constraints

o If amountToStake is greater than 0, stakingToken is
deducted from the user .

Events emit
None
Output

o rewardDebts
• withdrawStake

Description
The withdrawal amount is checked, the reward is calculated

and sent to the user, withdrawn from the coin staking.
Visibility
public
Input parameters

o uint256 _stakeAmount
Constraints

 None
Events emit
None
Output
None

• emergencyWithdraw
Description
Line withdrawal, stakingToken, but no reward, it is replaced.
Visibility
public
Input parameters
None
Constraints
None
Events emit
None
Output
None

• emergencyRewardWithdraw
Description
Urgent withdrawal of rewardToken by the owner.
Visibility

public
Input parameters

o uint256 _amount
Constraints

 None
Events emit
None
Output
None

• setFinishBlock
Description
Setting a higher staking end number by the owner.
Visibility
external onlyOwner
Input parameters

o uint256 _newFinishBlock
Constraints
None
Events emit
None
Output
uint256 public rewardPerBlock

• topUpStakingPool
Description
Replenishment by rewardToken owner. The rewardPerBlock is

recalculated.
Visibility
external onlyOwner
Input parameters

o uint256 _topUpAmount
Constraints
None
Events emit
None
Output
uint256 public rewardPerBlock

StakeMaster.sol

Description

StakeMaster is used to create the StakingPool.

Imports

StakeMaster contract hasn’t the imports.

Usages

StakeMaster contract has the following custom usages:

• SafeMath for uint;

Variables

• IERC20 public feeToken;
• address public feeWallet;
• uint256 public feeAmount;
• uint256 public burnPercent;
• uint256 public divider.

Structs

StakeMaster contract has no custom data structures.

Enums

StakeMaster contract has no custom enums.

Events

o event StakingPoolCreated(address owner, address pool);

o event TokenFeeUpdated(address newFeeToken);

o event FeeAmountUpdated(uint256 newFeeAmount);

o event BurnPercentUpdated(uint256 newBurnPercent);

o event FeeWalletUpdated(address newFeeWallet).

Modifiers

StakeMaster has the no custom modifiers.

Fields

StakeMaster contract hasn’t constants.

Functions

StakeMaster has following public functions:

• constructor
Description
Defines the values of feeToken, feeWallet, feeAmount,
burnPercent. feeToken - IERC20 token.
Visibility

public
Input parameters

o address _feeToken,
o address _feeWallet,
o uint256 _feeAmount,
o uint256 _burnPercent.

 Constraints
None
Events emit
None
Output
None

• setFeeToken
Description
Defines a new feeToken.
Visibility
external onlyOwner
Input parameters

o address _newFeeToken
 Constraints
None
Events emit
None
Output
None

• setFeeAmount
Description
Defines a new feeAmount.
Visibility
external onlyOwner
Input parameters

o uint256 _newFeeAmount
Constraints
None
Events emit
None
Output
None

• setFeeWallet
Description
Defines a new feeWallet.
Visibility
external onlyOwner
Input parameters

o address _newFeeWallet
Constraints

None
Events emit
None
Output
None

• setBurnPercent
Description
Defines a new burnPercent.
Visibility
external onlyOwner
Input parameters

o uint256 _newBurnPercent,
o uint256 _newDivider

Constraints
None
Events emit
None
Output
None

• createStakingPool
Description
Creates a new StakingPool contract.
Visibility
external
Input parameters

o address _stakingToken,
o address _poolToken,
o uint256 _startDate,
o uint256 _finishDate,
o uint256 _poolTokenAmount

Constraints
o Any user can create a StakingPool, but must provide a

feeToken transfer fee.
Events emit
None
Output
None

• isContract
Description
Checks is the address of the contract.
Visibility
private view.
Input parameters

o address _addr
Constraints

None
Events emit
None
Output
Bool

Audit overview
 Critical

1. Function transferFrom is not checked for success and can
return false value. Use SafeTransfer function instead.

Update: During remediation check issue was fixed.

 High

No high severity issues found.
 Medium

No medium severity issues found.
 Low

No low severity issues found.
 Lowest / Code style / Best Practice

1. Suboptimal memory usage. Staking as organized as in
StakingPool contract uses two mappings.

More convenient is to use accumulation pattern as in this
article: Bogdan Batog, Lucian Boca, Nick Johnson, "Scalable
Reward Distribution on the EthereumBlockchain"
https://uploads-
ssl.webflow.com/5ad71ffeb79acc67c8bcdaba/5ad8d1193a40977462
982470_scalable-reward-distribution-paper.pdf. Like in other
parts, rewardPerBlock needs to be calculated by balance.

Update: During remediation check issue was not fixed. This risk
is acceptable.

2. StakingPool Constructor: poolTokenAmount parameter is not
needed rewardPerBlock =
rewardToken.balanceOf(address(this)).div(finishBlock.sub(la
stRewardBlock));

Update: During remediation check issue was fixed.

3. getMultiplier: it can be made as internal function;

Update: During remediation check issue was fixed.

4. Functions stakeTokens and withdrawStake. Code duplication.
Function stakeTokens has almost the same component as
withdrawStake function.

Update: During remediation check issue was fixed.

https://uploads-ssl.webflow.com/5ad71ffeb79acc67c8bcdaba/5ad8d1193a40977462982470_scalable-reward-distribution-paper.pdf
https://uploads-ssl.webflow.com/5ad71ffeb79acc67c8bcdaba/5ad8d1193a40977462982470_scalable-reward-distribution-paper.pdf
https://uploads-ssl.webflow.com/5ad71ffeb79acc67c8bcdaba/5ad8d1193a40977462982470_scalable-reward-distribution-paper.pdf

Conclusion

Smart contracts within the scope were manually reviewed and
analyzed with static analysis tools. For the contract, high-level
description of functionality was presented in As-Is overview
section of the report.

Audit report contains all found security vulnerabilities and other
issues in the reviewed code.

Security engineers found 1 critical, 1 high, 0 medium, 0 low and
5 lowest issues during the audit.

Violations in the following categories were found and addressed
to Customer:

Category Check Item Comments

Code review ▪ Reentrancy ▪ Lack of reentrancy guard
checks.

 ▪ ERC20 API Violation ▪ Transfer from method
result success is
ignored.

 ▪ Business Logics Review ▪ Lack of whitepaper and
documentation.

 ▪ Style guide violation ▪ A lot of code-style
issues were found.

Update: Most contract’s vulnerabilities were fixed after the audit
was done. One low lowest severities left in contract and this risk
is acceptable. For details check “Audit overview” section.

Disclaimers

Hacken Disclaimer

The smart contracts given for audit have been analyzed in
accordance with the best industry practices at the date of this
report, in relation to cybersecurity vulnerabilities and issues
in smart contract source code, the details of which are disclosed
in this report (Source Code); the Source Code compilation,
deployment, and functionality (performing the intended
functions).

The audit makes no statements or warranties on security of the
code. It also cannot be considered as a sufficient assessment
regarding the utility and safety of the code, bugfree status or
any other statements of the contract. While we have done our best
in conducting the analysis and producing this report, it is
important to note that you should not rely on this report only -
we recommend proceeding with several independent audits and a
public bug bounty program to ensure security of smart contracts.

Technical Disclaimer

Smart contracts are deployed and executed on blockchain platform.
The platform, its programming language, and other software related
to the smart contract can have its vulnerabilities that can lead
to hacks. Thus, the audit can't guarantee the explicit security
of the audited smart contracts.

